High Dynamic Range Compression and Detail Enhancement using Laplacian Pyramid

memorial_global_laplician
memorial 原圖

 

將原圖建立 Laplacian Pyramid 拆為 9 層(n=0...8),其中最後一層為 low pass 影像(n=8),如下圖所示

  1. G_{i+1}=downsample(G_{i})
  2. G^{'}_{i}=upsample(G_{i+1})
  3. L_{i}=G_{i}-G^{'}_{i}
pramid
Laplacian pyramid

 

 

若將每一層都放大到同一個大小來看如下圖所示

Laplacian pyramid reconstruction

已知 low-pass 影像 G_{i},求G_{i-1},這邊我們為了壓縮 dynamic range ,會將 residual layer 乘上一個小於 1 的 scalar 項;反之加強則是大於 1 。

G_{i-1}=upsampling(G_{i})+w_{i-1}*L_{i-1}

 

如圖我們想要把下方窗戶的顏色拉出來,目測 residual layer,發現在第L_{3}...L_{5}的窗戶亮度很亮,故乘上小於 1 的 scalar。重建結果如下;

m1
w=\{1.0, 1.0, 1.0, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0\}

延續上面的 w 設定,將  L_{0} 強化,令 w_{0}=3 ,可以見到細部邊緣的對比被強化,如下圖

memorial_global_laplician
w=\{3.0, 1.0, 1.0, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0\}

考慮到越 low-pass 的 residual 保留了較多的亮度差異,所以 w 的調整原則是越 low-pass 越小

memorial_global_laplician
w=\{2.5, 2.0, 1.5, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0\}

我們發現儘管調整了極值區域到適合亮度,但 high-pass 部分在暗部區域卻仍顯不足,對比很低。故應對區域亮度做調整 high-pass 的強度。

到此我們已經有點感覺,要選到正確的 scale 來做 enhancement 才能達到最佳的效果,但僅對每個 pyramid layer 做簡單的調整顯然不是很自然,需要 by pixel 做調整。本篇作為 Local Laplacian Filtering 的前導實驗。

Leave a Reply

Your email address will not be published. Required fields are marked *